网站标志
导航菜单
当前日期时间
当前时间:
购物车
购物车中有 0 件商品 去结算 我的订单
商品搜索
商品搜索:
文章正文
高速切削的关键技术及应用
作者:管理员    发布于:2016-04-27 19:53:04    文字:【】【】【
机械加工技术正朝着高效率、高精度、高柔性和绿色制造的方向发展。在机械加工技术中,切削加工是应用最广泛的加工方法。近年来,高速切削技术蓬勃发展,已成为切削加工的主流和先进制造技术的一个重要发展方向。在数控机床出现以前,用于工件上下料、测量、换刀和调整机床等的辅助时间超过工件加工总工时的70%;以数控机床为基础的柔性制造技术的发展和应用,大大降低了工件加工的辅助时间,切削所占时间比例越来越大。因此,实现高速切削成为提高机床生产效率的重要技术手段之一。目前,高速切削技术在航空航天、模具生产和汽车制造等行业已经获得广泛应用,并产生了巨大的经济效益。我国是机床消费大国,已经超过德国,成为世界第一大机床市场。高速切削作为一种新的切削加工理念,对其深入研究具有重要意义。本文作者着重研究了高速切削的关键技术——机床技术、刀具技术和工艺技术及其应用。

  1.高速切削技术概述

  1.1高速切削的概念

  高速切削(HighSpeedCutting)是一个相对概念,迄今尚未有一个确切的界定。高速切削通常指比常规切削速度和进给速度高出5倍~10倍的切削加工,有时也称为超高速切削(Ultra2 high Speed Cutting)。也有将主轴转速达到10000r/min~60000r/min,快速进给速度40m/min以上,平均进给速度10m/min以上,加速度大于1g的切削加工定义为高速切削。对于不同的工件材料和加工工艺,高速切削速度(切削加工的线速度,单位m/min)范围也不同。按工件材料划分,当切削速度对钢材达到380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材1100m/min以上、塑料1150m/min以上时,被认为是合适的高速切削速度范围;按加工工艺划分,高速切削速度范围为:车削700m/min~7000m/min,铣削300m/min~6000m/min,钻削200m/min~1100m/min,磨削5000m/min~10000m/min。

  高速切削概念是德国切削物理学家萨洛蒙(CarlSalomon)于1931年提出的,现在人们常用“萨洛蒙曲线”来表示。他认为,在常规切削速度范围内,切削温度随着切削速度的提高而升高,一定的工件材料对应有一个临界切削速度,此处切削温度最高,但当切削速度超过临界值后,切削温度不但不升反而下降。对于每一种工件材料,都存在一个速度范围,在该范围内,由于切削温度太高,刀具材料无法承受,切削加工不能进行,这个范围称之为“死谷”。如果切削速度能越过“死谷”,在高速区工作,则有可能用现有的刀具进行高速切削,切削温度与常规切削基本相同,从而大大减少切削工时,大幅度提高机床生产效率。

  1.2高速切削技术的特点

  高速切削速度较之常规切削速度几乎高出1个数量级,其切削机制异于常规切削。由于切削机制的改变,使得高速切削技术具有如下特点。

  1.2.1切削力小

  由于切削速度高,切屑流出速度加快,切屑流出阻力减少,切削变形减小,从而使切削力比常规切削降低30%以上,尤其是主轴轴承、刀具、工件受到的径向切削力大幅度减少,特别适合于加工薄壁类刚性差的工件,如飞机上的机翼壁板等。

  1.2.2工件热变形小

  在高速切削时,90%以上的切削热来不及传给工件就被高速流出的切屑带走,工件积累热量少,工件温升不会超过3℃,基本保持冷态,不会由于温升导致热变形,特别适合于加工细长易热变的工件。

  1.2.3材料切除率高

  随切削速度的提高,进给速度也相应提高5倍~10倍,单位时间内的材料切除率可达常规切削的3倍~6倍,适用于材料切除率要求大的场合,在航空航天、汽车和模具制造等领域,高速切削技术已成为加工整体构件最理想的制造技术。在2001年德国汉诺威举办的欧洲机床展览会(EMO)上展出的荷兰Unisign公司制造的Unipro25型五轴立式加工中心(X行程1000mm、Y行程800mm),电主轴功率100kW,最高转速25000r/min,最大扭矩90N•m,其铣削铝合金的材料切除率已达8000cm3/min~10000cm3/min。
1.2.4工艺系统振动小,可实现高精度、低粗糙度加工

  在高速切削时,机床的激振频率很高,远远超出了“机床—刀具—工件”工艺系统的固有频率范围(50Hz~300Hz),使得加工过程平稳,振动小,可实现高精度、低粗糙度加工。高速切削加工获得的表面质量常可达磨削水平,因此常可省去铣削后的精加工工序。例如,瑞士DIXI机械公司生产的DHP50高精度卧式加工中心,工作台500mm×500mm,双托盘,行程为700mm×700mm×700mm,主轴转速为12000r/min,功率为25kW,刀库容量65把,换刀时间4s(T2T),6s(C2C),定位精度4μm,重复定位精度2μm(按ISO23022标准),测量分辨率0.5μm。高速切削尤其适合于光学等领域的加工。

  1.2.5可加工难加工材料

  难加工材料如高锰钢、淬硬钢、奥氏体不锈钢、复合材料和耐磨铸铁等的切削加工不仅切削效率低,而且刀具寿命短。高速切削时,由于切削力小,切屑变形阻力小,刀具磨损小,故可加工一些难加工材料。例如,航空制造业中大量采用的镍基合金、钛合金材料,强度大、硬度高、耐冲击、易加工硬化,切削温度高,刀具磨损严重,在常规切削中一般采用很低的切削速度。如果采用高速切削,其切削速度可提高到100m/min~1000m/min,不但能大幅度提高机床生产效率,而且能有效减少刀具磨损,提高工件表面加工质量。

  1.2.6高速干切削可以实现加工过程的绿色制造

  高速干切削就是在切削加工过程中不使用任何切削液的工艺方法,是对传统切削方式的一种技术创新。它相对于湿切削而言,是一种从源头上控制污染的绿色切削和清洁制造工艺,它消除了切削液的使用对外部系统造成的负面影响。目前,能实现高速干切削的工件材料有铸铁、铝合金、滚动轴承钢等。

  2.高速切削的关键技术

  高速切削是一项复杂的系统工程。高速切削不只是切削速度的提高,它的发展涉及到机床、刀具、工艺和材料等诸多领域的技术配合和技术创新。

  2.1高速切削机床技术

  性能良好的高速切削机床是实现高速切削的前提和关键,而具有高精度的高速主轴和控制精度高的高速进给系统,则是高速切削机床技术的关键所在。
2.1.1高速主轴

  高速主轴是高速切削机床的核心部件,在很大程度上决定着高速切削机床所能达到的切削速度、加工精度和应用范围。目前,适于高速切削的加工中心其主轴最高转速一般都大于10000r/min,有的高达60000r/min~100000r/min,为普通机床的10倍左右;主电动机功率15kW~80kW,以满足高速车削、高速铣削之要求。

  随着电气传动技术(变频调速技术、电动机矢量控制技术等)的快速发展,高速数控机床主传动的机械结构得到极大简化,取消了齿轮传动和带传动,采用机床主轴与主轴电机一体化的传动结构形式(即所谓的电主轴),实现了机床的“零传动”。

  轴承是决定主轴寿命和负荷的关键部件。电主轴采用的轴承主要有滚动轴承、流体静压轴承和磁悬浮轴承。滚动轴承因其具有刚度高、高速性能好、结构简洁、标准化程度高和价格适中等优点,在电主轴中得到最广泛应用。滚动轴承在高速回转时,润滑极为重要,目前,电主轴主要采用两种润滑方式:油脂润滑和油-气润滑。油雾润滑尽管价廉,但因其污染环境、损害操作工人健康,不符合绿色制造和可持续发展原则,国外电主轴公司已不再使用。流体静压轴承(包括气体静压轴承和液体静压轴承)为非接触式轴承,具有磨损小、寿命长、旋转精度高和阻尼特性好等优点。气体静压轴承电主轴转速可高达100000r/min~200000r/min,缺点是刚度差,承载能力低;液体静压轴承刚度高,承载能力强。磁悬浮轴承又称磁力轴承,也为非接触式轴承,没有磨损,无需任何润滑。

  目前,生产磁悬浮轴承电主轴的厂家有德国GMN公司、瑞士IBAG公司及中国洛阳轴承研究所等。

  2.1.2高速进给系统

  控制精度高的高速进给系统也是实现高速切削的关键技术之一。

  传统的滚珠丝杠副传动系统对高速进给系统表现出不适应性,必须对其进行技术改进和技术创新,才能适应高速切削的要求。主要技术措施有:(1)丝杠采用中空结构,提高丝杠的支承刚度。(2)为降低高速滚珠丝杠副传动系统的发热,将冷却液通入空心丝杠内部进行强制循环冷却,以保证滚珠丝杠副传动系统的精度。(3)改进螺母结构设计,适当减小滚珠直径,钢珠采用空心结构,滚珠链中钢珠按一大一小间隔排列,可有效降低高速运行时的噪声。(4)改进滚珠材料,滚珠选用陶瓷材料,可显著降低温升。(5)采用螺母旋转、丝杠不动的驱动方案。将螺母安装于轴承中,由伺服电机带动其旋转,或将螺母与驱动电机的转子集成为一体,由转子直接驱动。
该结构由于丝杠固定不动,螺母作高速旋转的同时作轴向移动,故可消除丝杠临界转速的限制。

  高速滚珠丝杠副传动系统的加速度范围为(0.5~1.0)g,行程范围≤6m,用于低档高速数控机床;高速进给系统采用直线电机进给驱动系统后,其加速度可高达(2~10)g,行程范围不受限制,用于高档高速数控机床和高速加工中心。直线电机进给驱动系统具有以下优点:(1)高速响应性。由于系统采用直线电机直接驱动工作台,机床实现“零传动”,故使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。(2)速度和加速度高。最大进给速度可达80~180m/min,加速度可高达(2~10)g。(3)定位精度高。直线电机进给驱动系统常用光栅尺作为位置测量元件,采用闭环控制,因而定位精度可高达0.1μm~0.01
浏览 (91) | 评论 (0) | 评分(0) | 支持(0) | 反对(0) | 发布人:管理员
将本文加入收藏夹
新闻详情
脚注栏目
|
脚注信息
机电工程网(C) 2015-2020 All Rights Reserved.    联系我们