网站标志
导航菜单
当前日期时间
当前时间:
购物车
购物车中有 0 件商品 去结算 我的订单
商品搜索
商品搜索:
文章正文
COFDM知识与应用特点
作者:管理员    发布于:2015-11-01 15:48:25    文字:【】【】【

 COFDM知识

COFDM(coded orthogonal frequency division multiplexing),既编码正交频分复用的简称,是目前世界最先进和最具发展潜力的调制技术。其基本原理就是将高速数据流通过串并转换,分配到传输速率较低的若干子信道中进行传输。编码(C)是指信道编码采用编码率可变的卷积编码方式,以适应不同重要性数据的保护要求;正交频分(OFD)指使用大量的载波(副载波),它们有相等的频率间隔,都是一个基本震荡频率的整数倍;复用(M)指多路数据源相互交织地分布在上述大量载波上,形成一个频道。
 
这种“正交”表示的是载波频率间精确的数学关系。按照这种设想,COFDM既能充分利用信道带宽,也可以避免使用高速均衡和抗突发噪声差错。COFDM是一种特殊的多载波通信方案,单个用户的信息流被串/并变换为多个低速率码流,每个码流都用一个子载波发送。COFDM不用带通滤波器来分隔子载波,而是通过快速傅立叶变换(FFT)来选用那些即便混叠也能够保持正交的波形。
 
COFDM技术属于多载波调制(Multi-CarrierModulation,MCM)技术。有些文献上将OFDM和MCM混用,实际上不够严密。MCM与COFDM常用于无线信道,它们的区别在于:COFDM技术特指将信道划分成正交的子信道,频道利用率高;而MCM,可以是更多种信道划分方法。
 
COFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而减小了子载波间的相互干扰。
 COFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。COFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。COFDM还采用了功率控制和自适应调制相协调工作方式。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。
 
COFDM技术是HPA联盟(HomePlug Powerline Alliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。
 COFDM技术能同时分开多个数字信号,而且在干扰的信号周围可以安全运行。正是由于具有了这种特殊的信号“穿透能力”,使得COFDM技术深受通信设备商以及手机生产商的喜爱和欢迎。COFDM技术能够持续不断地监控传输介质上通信特性的突然变化,通信路径传送数据的能力会随时间发生变化,COFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信。该技术可以自动地检测传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。COFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号撒播的地区、高速的数据传播及播音都希望删除多径影响的地方。
 
COFDM技术主要有如下几个优点:

(1) 在窄带带宽下也能够发出大量的数据:COFDM技术能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得COFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约Flarion工学院以及朗讯工学院等开始使用,在加拿大Wi-LAN工学院也开始使用这项技术。
 
(2) COFDM技术能够持续不断地监控传输介质上通信特性的突然变化:由于通信路径传送数据的能力会随时间发生变化,所以COFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信;
 
(3) 该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信;

(4) COFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。

(6) 可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。
 
(7) 通过各个子载波的联合编码,具有很强的抗衰落能力。COFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。
 
(8) COFDM技术抗窄带干扰性很强,因为这些干扰仅仅影响到很小一部分的子信道。

(9) 可以选用基于IFFT/FFT的OFDM实现方法;

(10) 信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。

表现在实际应用中,COFDM有以下独具的优势:

首先,抗衰落能力强。COFDM把用户信息通过多个子载波传输,在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,使COFDM对脉冲噪声(Impulse Noise)和信道快衰落的抵抗力更强。同时,通过子载波的联合编码,达到了子信道间的频率分集的作用,也增强了对脉冲噪声和信道快衰落的抵抗力。因此,如果衰落不是特别严重,就没有必要再添加时域均衡器。
 
其次,频率利用率高。COFDM允许重叠的正交子载波作为子信道,而不是传统的利用保护频带分离子信道的方式,提高了频率利用效率。

再者,适合高速数据传输。COFDM自适应调制机制使不同的子载波可以按照信道情况和噪音背景的不同使用不同的调制方式。当信道条件好的时候,采用效率高的调制方式。当信道条件差的时候,采用抗干扰能力强的调制方式。再有,COFDM加载算法的采用,使系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,COFDM技术非常适合高速数据传输。
 
此外,抗码间干扰(ISI)能力强。码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性的干扰。造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。COFDM由于采用了循环前缀,对抗码间干扰的能力很强。
 COFDM技术应用于无线图像传输优点
无线图像传输广义上属于无线宽带传输,大体经历模拟、数字传输两个阶段。

模拟图像传输因其多经干扰、同频干扰和噪声叠加,导致实际应用中图像传输可靠性和高图像质量难以保证,因此模拟图像无线传输在很多行业已基本被淘汰。

随着图像编解码和无线数字调制技术的发展,无线数字图像传输成为目前的技术中坚。其基本结构均为视音频编码—无线信道数字调制--视音频解码。
 

目前现有的无线应用中,视音频压缩编码以MPEG2/4、H.261/263等为主。其中高质量图像(标准PAL/NTSC制式或分辨率不小于700×500)一般以MPEG2编解码居多,个别采用小波编解码。其对应的无线传输按体制可以用微波(数字微波、扩频微波)、无线LAN(802.11FHSS、802.11(b)DSSS、802.11(g)DSSS/OFDM、802.11(a)COFDM)等技术实现。虽然,这些技术各有优势,但它们大多都存在共同的缺点,如通视传输、定向传输、不支持移动等,从而限制用户的应用,甚至无法满足部分用户最基本的需求。
 
随着COFDM技术及组件的成熟,国外在无线图像上已趋于淘汰微波和802.11FHSS、802.11(b)DSSS等方案,而采用COFDM技术的产品。

COFDM技术应用于无线图像传输优点有如下方面:

1、 适合在城区、城郊、建筑物内等非通视和有阻挡的环境中应用,表现出卓越的“绕射”“穿透”能力。

传统的微波设备,必须在通视条件(既收发两点之间必须无阻挡)下才能建立链路,所以使用中受环境制约,需要提前考察环境,拟定、实测收发点。即使成功“布点”,天线定向、线缆布置等工作也相当烦琐,不仅直接限制视音频源的获取、传输,而且系统的可靠性、工作效率也大打折扣。
 

COFDM无线图像设备则彻底改变了这种局面。因其多载波等技术特点,COFDM设备具备“非视距”、“绕射”传输的优势,在城区、山地、建筑物内外等不能通视及有阻挡的环境中,该设备能够以高概率实现图像的稳定传输,不受环境影响或受环境影响小。其收发两端一般采用全向天线,无须预先“踩点”、“定向”、布设繁杂的视音频输入、输出电缆,视音频源的采集端、接收端可根据现场情况及指挥/导演的要求自由活动。系统简单、可靠,应用灵活。
 
2、 适合高速移动中传输,可应用于车辆、船舶、直升机/无人机等平台。

对于大多数行业而言,无线图像的一般应用模式是:视音频前端采集—接入点(车、船、机)--视音频处理中心(一般通过有线链路或卫通)。所以车辆、船舶、直升机/无人机等平台是系统非常重要的组成部分,其核心的功能之一就是实时接入前端的图像。
 
微波(数字微波、扩频微波)、无线LAN等设备因其技术体制的原因,无法独立实现收、发端的移动中传输。如应用到车辆、船舶上,通常的方案是再配置附加的“伺服稳定”装置,以解决电磁波定向、跟踪、稳定等问题,且仅能在一定条件下实现移动点对固定点的传输。这样,其系统的技术环节多,工程复杂,可靠性降低,造价极高。
 但对于COFDM设备,它不需要任何附加装置,就可实现固定—移动,移动—移动间的使用,非常适合安装到车辆、船舶、直升机/无人机等移动平台上。不仅传输有高可靠性,而且对比以上的方案,由于无须再配置附加的“伺服稳定”装置,所以表现出很高的性价比。
 
3、适合高速数据传输,速率一般大于4M bps,满足高质量视音频的传输。

高质量的视音频除对摄像机的要求外,对编码流、信道速率要求十分高。一般的数字微波,扩频微波传输中,虽然采用MPEG2编码,但信道多采用2M速率,如E1,使得解码后的图像分辨率一般为352×288,无法满足后期分析、存储、编辑等要求。
 
COFDM技术每个子载波可以选择QPSK、16QAM、64QAM等高速调制,合成后的信道速率一般均大于4M bps。因此,可以传输MPEG2中4:2:0、4:2:2等高质量编解码,接收端图像分辨率可达到576×720或480×720,满足后期分析、存储、编辑等要求。


4、在复杂电磁环境中,COFDM具备优异的抗干扰性能。


对抗频率选择性衰落或窄带干扰及信号波形间的干扰性能优越,通过各个子载波的联合编码,具有很强的抗衰落能力。在单载波系统中(如数字微波,扩频微波等),单个衰落或干扰能够导致整个通信链路失败,但是在多载波COFDM系统中,仅仅有很小一部分子载波会受到干扰,并且这些子信道还可以采用纠错码来进行纠错,确保传输的低误码率。


5、 信道利用率很高。


这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz

浏览 (180) | 评论 (0) | 评分(0) | 支持(0) | 反对(0) | 发布人:管理员
将本文加入收藏夹
新闻详情
脚注信息
中国汽车网(C) 2015-2020 All Rights Reserved.